sábado, 27 de junio de 2015

Teorema de Pitágoras

A propósito de los polígonos, veamos como hace cientos de años se demostró GEOMÉTRICAMENTE y ARITMÉTICAMENTE el TEOREMA DE PITÁGORAS.

El teorema de Pitágoras establece que en todo triángulo rectángulo, el cuadrado de la hipotenusa (el lado de mayor longitud del triángulo rectángulo) es igual a la suma de los cuadrados de los catetos (los dos lados menores del triángulo, los que conforman el ángulo recto).

Si un triángulo rectángulo tiene catetos de longitudes  a \, y  b \,, y la medida de la hipotenusa es  c \,, se establece que:
(1)  c^2 = a^2 + b^2 \,
De la ecuación (1) se deducen fácilmente 3 corolarios de aplicación práctica:
 a = \sqrt {c^2 - b^2}  b= \sqrt{c^2-a^2}  c = \sqrt {a^2 + b^2}








1 comentario: